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Abstract— In shared autonomy, the user input is blended
with the assistive motion to accomplish a task where the user
goal is typically unknown to the robot. Transparency between
the human and robot is essential for effective collaboration.
Prior works have provided methods for the robot to infer
the user goal; however, they are usually dependent on the
distance between the robot and object, which may not be
directly associated with the real-time user control intention and
thus cause low control feelings. Here, we propose a real-time
goal prediction method driven by assistive motion generated
by learning from demonstration (LfD) allowing more reactive
assistive behaviors. This LfD-generated assistive motion is
blended with the user input based on goal predictions to achieve
targeted tasks. The LfD policy was learned offline and used with
different users. To evaluate our proposed method, we compared
it with a state-of-the-art Partially Observable Markov Decision
Process (POMDP) based method using a distance cost, and
a direct control method (i.e., joystick). A pilot study (N = 6)
was conducted to control a 6-DoF Kinova Mico robotic arm to
carry out three tasks: (1) reaching-and-grasping, (2) pouring,
and (3) object-returning with the three control methods. We
used both objective and subjective measures in the comparative
study. Results show that our method has the shortest task
completion time, the lowest amount of joystick control inputs
among all three control methods, as well as a significantly lower
angular difference between the user input and assistive motion
compared to the POMDP-based method. Besides, it obtains the
highest subjective score in the user preference and perceived
speed ratings, and the second-highest in the control feeling and
the robot did what I wanted ratings.

I. INTRODUCTION

The user input is explicitly mapped to the robot’s final
motion during direct robotic teleoperations. To reduce the
user’s burden, shared autonomy is used to provide intelligent
assistance where the transparency between human and robot
plays a crucial role in achieving efficient and seamless
collaboration [1], [2]. Two perspectives, among many, have
become growing interests for elevating the transparency: (1)
how to predict the user goal, and (2) how to make the robot’s
assistive motion more human-like.

Prior user goal prediction research extensively uses
distance-based cost functions. One study predicted the goal
to be the nearest object around the end-effector in an indus-
trial grasp-and-spray task [3]. Another study combined the
distance with the agreement between the user input and the
final motion executed by the robot [4]. Distance information
was also analyzed and compared using two different forms of
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Fig. 1. The robot can assist users in daily tasks such as reaching, grasping,
and pouring. In this figure, the user was completing a pouring task.

cost functions: the hinge loss versus the maximum-entropy-
principle-based loss [5]. The maximum entropy principle
restores the underlying user costs by updating a normalized
distribution over the user control sequences [6]. This prin-
ciple has been successfully incorporated into the Partially
Observable Markov Decision Process (POMDP) framework
to assist in minimizing the expected cost-to-go for an un-
known user goal and approximating the assistive motion
via hindsight optimization, which was validated using an
empirically-derived distance cost in the experiment without
losing generality [7]. Besides the distance information, gaze
cue (e.g., center on the target object) has been adopted for the
POMDP framework to update the probabilistic distribution
over potential user goals [8]. More recently, a human-in-the-
loop deep reinforcement learning method has been proposed
to directly map environment observations and user inputs to
the robot motion in contexts where the transition dynamics,
user policy, and goal representation are unclear [9]. With
this method, user goals can be implicitly constructed without
defining the goal space.

On the other end of the consideration, learning-from-
demonstration (LfD) techniques have been used in shared
autonomy to make the robot’s motion feel more legible,
understandable, and human-like for the users [10], [11]. LfD
is categorized, from the learning algorithm perspective, into
two main categories: (1) direct and (2) indirect approach.
In the former, demonstrations are used to learn a policy
that directly maps the input (i.e., state) to the output (i.e.,
action); this is often referred to as Behavioural Cloning
(BC) [12]. In the latter, reward functions are recovered from
demonstrations, and then a policy is learned in a way that
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maximizes these reward functions; this is often referred to
as Inverse Reinforcement Learning (IRL) [13] or Inverse
Optimal Control (IOC) [14].

One widely-used LfD framework in the direct approach
category is the Dynamic Movement Primitive (DMP) [15].
This learning method is based on a system of second-order
ordinary differential equations in which a forcing term can be
“learned” to encode the desired trajectory. DMP has already
proven effective for learning repeated tasks to reduce the
user burden in shared teleoperation [16]. It has also been
deployed in human-robot cooperation tasks for learning how
to move in the same direction as the user to collaboratively
move a tray of bottles [17]. Furthermore, it has been utilized
for learning daily-living tasks in rehabilitation and assistive
robotics scenarios [18], [19].

Despite the above-mentioned progress, limited effort has
been made to link the user goal prediction to the LfD-
generated assistive motion in shared autonomy. By allowing
these two components to work together, the system trans-
parency and overall experience may be further improved.
Thus, we propose an LfD-based framework for user goal
prediction and shared assistive control. To show the effective-
ness of the proposed method, we compared it with one of the
state-of-the-art methods in prediction-based shared assistive
control and a direct control method (i.e., using a joystick).
The paper’s main contributions are summarized as follows:

1) We propose the use of DMP-based assistive motion for
real-time user goal prediction and assistive control in
shared autonomy.

2) We conduct a pilot study comparing our proposed
methodology with the POMDP framework and direct
robotic control for completing daily-living tasks.

II. METHODS

In this section, we firstly describe the proposed DMP-
based control method; then we summarize the other two
control methods that we compared our method with.

A. DMP-Based Assistive Control Method

The DMP-based method is adopted to learn motion skills
from demonstrations offline. Specifically, three types of
motion skills are learned for the pilot study: (i) reach-and-
grasp, (ii) pouring, and (iii) object-returning task by letting
a researcher with a robotics background (one of the authors)
operate a joystick device to demonstrate these tasks to a
6-DoF Kinova Mico robotic arm. The demonstrations are
recorded as the coordinates of the end-effector’s motion,
which are subsequently used to construct DMP models
for real-time online goal prediction and assistive motion
generation/arbitration.

1) DMP Learning Model: Each degree of freedom (DoF)
of the DMP motion can be modeled as a 2nd-order damped
spring system with a goal attractor [20]:

τ ÿ = αz(βz(g − y)− ẏ) + f (1)

where y is the system state, g is the goal state, αz and βz
are gain terms, τ is a temporal scaling factor, and f is a

non-linear forcing term:

f(x, g) =

∑N
i=1 ψiwi∑N
i=1 ψi

x(g − y0) (2)

where y0 is the initial system state, wi is the weight of
the radial basis function, and x is the canonical system
phase which is described by the dynamical equation ẋ =
−αxx. Radial basis functions are conventionally modeled as
Gaussian-types.

Offline-learned DMP skills need to be adjusted for real-
time assistive control to accommodate the likelihood of
discontinuous control progress, e.g., users briefly pause their
control in the middle of the task. Thus, instead of using
the dynamical equation producing a continuous change in
the canonical system phase, the phase of each object in the
environment is estimated by the following two steps: (1) the
time-to-go t of the task is estimated as:

t =
||~ys − ~yg||
||~y0 − ~yg||

· T (3)

where ~ys is the robot’s 6-DoF sensory state, ~y0 is the initial
state, ~yg is the goal state, and T is the time constant used
in the offline DMP baseline training; (2) assuming the user
makes rational decisions and aims at moving towards the
goal, the canonical system phase x can then be estimated as:

xest. = e
−αzτt

t+telapsed (4)

where telapsed is the elapsed time since the start of the
task. By retrieving the forcing term f based on xest., we
can generate the corresponding 6-DoF DMP system state
consisting of 3 translations and 3 rotations for this particular
time step and use the state’s 1st-order derivatives as the
assistive motion ~udmpa (g) for this particular object.

2) User Goal Prediction: Offline-learned DMP models
are used to predict the user goal by examining the agreement
between the user input (i.e., joystick command) ~uh and
DMP-generated assistive motion ~udmpa (g) during the control
process. The probability of observing the current user input
~uh given the user goal g is calculated as:

πdmp(~uh|g) = e−C
2
user(~uh,~u

dmp
a (g)) (5)

where Cuser is the user cost defined as:

Cuser(~uh, ~u
dmp
a (g)) = arccos(

~uh · ~udmpa (g)

‖~uh‖·‖~udmpa (g)‖
) (6)

which essentially captures the cosine similarity between the
user input and assistive motion. Jointly concatenating such
probability at each time step, the probability of observing a
history of user inputs ξ0→telapsed given the goal g is:

pdmp(ξ0→telapsed |g) =
∏
t

πdmpt (~uh|g) (7)

Lastly via the Bayes’ rule, the probability of an object being
the goal g given the history of user inputs becomes:

pdmp(g|ξ0→telapsed) =
pdmp(ξ0→telapsed |g)p(g)∑
g′ p

dmp(ξ0→telapsed |g′)p(g′)
(8)
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Fig. 2. Block diagram of the DMP-based assistive control method.

where the prior user goal information p(g) is assumed to be
uniformly distributed across objects in the environment prior
to observing any user control input and is summed up to one.

3) Assistive Motion Generation and Arbitration: Typical
motion arbitration techniques can be expressed as follows:

~ur = (1− α)~uh + α~ua (9)

where ~ua is the assistive motion, ~uh is the user input, α
is the blending factor, and ~ur is the final motion executed
by the robot. The goal prediction is mapped to the blending
factor via a transfer function (e.g, linear or Sigmoid-type):

α = fα(p(g|ξ0→t)) (10)

The DMP-based method selects the assistive motion as the
DMP-generated assistive motion corresponding to the object
with the highest prediction confidence: ~ua = ~udmpa (gdmp),
while the blending factor used in our pilot study is linearly
calculated as:

αdmp =


0, pdmp < pmin,
pdmp(gdmp)−pmin

pmax−pmin , pmin ≤ pdmp ≤ pmax,
1, pdmp > pmax.

(11)
where pdmp is the prediction confidence for gdmp, pmin (=
0.2) is the lower bound triggering a change in the blending
factor, and pmax (= 0.9) is the upper bound terminating the
change. The final robotic motion is normalized based on the
magnitude of the user input such that the robot stays still
when there is zero user input. The block diagram of the
DMP-based method is shown in Fig. 2, and the associated
assistive control algorithm is summarized in Algorithm 1.

B. POMDP-Based Assistive Control Method

This subsection summarizes the POMDP-based control
method used for comparison in the pilot study [7].

1) User Goal Prediction: The maximum entropy principle
is integrated into the POMDP framework to compute the
probability of observing the current user input ~uh given the
user goal g and the robot’s 6-DoF sensory feedback ~ys:

πpomdp(~uh|~ys, g) = eVg(~ys)−Qg(~ys,~ua,~uh) (12)

where Vg(~ys) is the approximated value function given
the robot’s sensory feedback, and Qg(~ys, ~ua, ~uh) is the

Algorithm 1: DMP-based assistive control algorithm

telapsed = 0; tpause = 0;
for g in ~g do

DMPg.xest. = 0;
~udmpa (g) = DMPg .step(xest.);

end
gdmp = arg maxg p

dmp(g|ξ0→telapsed);
while (||~ys − gdmp||> δdmp) do

t =
||~ys−~yg||
||~y0−~yg|| · T ;

if (||~uh||6= 0) then
telapsed += ∆t; tpause = 0;

xest. = e
−αzτt

t+telapsed ;
else

tpause += ∆t;
if tpause > 1 sec then

telapsed = 0; tpause = 0;
for g in ~g do

DMPg.xest. = 0;
end

end
end
for g in ~g do

~udmpa (g) = DMPg .step(xest.);
end
gdmp = arg maxg p

dmp(g|ξ0→telapsed) ;
~udmpr = (1− αdmp)~uh + αdmp~u

dmp
a (gdmp);

~udmpr = ~udmpr · ‖~uh‖
‖~udmpr ‖

end

approximated Q function given the robot’s sensory feedback,
assistive motion, user input, and goal. An empirical distance
user cost is adopted for calculating the value and Q functions:

Cuser(~ys) =

{
K, d > δpomdp,

K d
δpomdp

, d ≤ δpomdp.
(13)

where the cost is constant when the robot is far away from
the object whereas linear when close to the object. Similar
to the DMP-based method, the probability of observing the
user input history ppomdp(ξ0→t|g) can be obtained by con-
catenating πpomdp(~uh|~ys, g) at each time step and converted
to goal predictions ppomdp(g|ξ0→t) through the Bayes’ rule.

2) Assistive Motion Generation and Arbitration: The
assistive motion for an individual assumed goal object g
is approximated as the derivative of the Q function via
hindsight optimization in the POMDP framework:

~upodmpa (g) = Q̇g(~ys, ~ua, ~uh) (14)

The net assistive motion is then calculated as the sum of
individual assistive motion weighted by the predictions:

~upomdpa =
∑
g

ppomdp(g|ξ0→t)Q̇g(~ys, ~ua, ~uh) (15)
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In our pilot study, the POMDP-generated assistive motion is
equally blended with the user input, meaning that the user
control and assistive motion remain equal influences over the
final robotic motion throughout the task:

~upomdpr = ~uh + ~upomdpa (16)

To make it comparable to the DMP-based method, the
POMDP-generated final motion is also normalized based on
the magnitude of the user input.

C. Direct Control Method

The direct control method directly uses a Kinova Mico
robotic arm joystick to map the user input to the robot’s
end-effector final motion without involving any assistive
motion. Moving the joystick’s handle left-right moves the
end-effector along the X-axis, front-back along the Y-axis,
while rotating it clockwise-counterclockwise moves it up-
down along the Z-axis. The user needs to press a button
to switch to the angular-velocity control mode where left-
right, front-back, and clockwise-counterclockwise handle
movement is mapped to the corresponding angular velocity
of each axis. The same button needs to be pressed again to
switch to a mode in which rotating the handle clockwise-
counterclockwise opens-closes the gripper’s fingers.

III. PILOT STUDY

Our pilot study compared three control methods using both
objective and subjective measures. Specifically, three tasks
were tested: (1) reaching-and-grasping a bottle, (2) pouring
the water from the bottle into a container, and (3) returning
the bottle to the start position and releasing it.

A. Experimental Procedure

We pilot-tested six subjects recruited from the Carnegie
Mellon University; half of them have prior robotics experi-
ences while the other half have no experiences. Subjects were
introduced to the experimental setup via a verbal briefing.
Then, they were provided two minutes to practice each
control method during which they used a Kinova joystick
to control a 6-DoF Kinova Mico robotic arm to complete
the experimented task sequence. In the experiment, we set
up three objects on the table: one orange water bottle and
two containers (one blue cup and one white bowl) as shown
in Fig. 3. The blue cup acted as an interfering object to
diversify the environment. Each trial consisted of three steps:
(1) subjects were asked to reach and grasp the orange water
bottle; (2) pour water from the bottle to the white bowl; and
(3) move the bottle to its original location and release it.
The timestamp, normalized user joystick input, and assistive
motion were all recorded. Five trials were repeated for
each control method, and the control method was referred
to by number (e.g., ”method 1”). Thus, subjects were not
aware of what specific control method they were using.
Additionally, we randomized the test sequence of control
methods across different subjects to mitigate the carryover
effects. Objective/subjective measures were both averaged
across trials and subjects.

Fig. 3. The object configuration in the environment for the pilot study.

B. Performance Measurements

Three measures were used for objective assessments: (1)
the task completion time, (2) total amount of user joystick
inputs (normalized between [0, 1] at each time step), and
(3) angular difference between the user input and assistive
motion. The angular difference metric was only used for eval-
uating the DMP-/POMDP-based methods where assistance
is available. Subjective measures were rated using a survey
consisting of the four statements below (adjusted from [7]):

1) ”I felt in control.”
2) ”The robot did what I wanted.”
3) ”I was able to complete the tasks quickly”
4) ”I prefer to use this control method.”

The second statement, compared to the first one, emphasized
more on whether the robot helps achieve high-level task
goals. Subjects were asked to give a rating from 1 to 7 for
each statement based on the 7-point Likert scale [21].

C. Hypotheses

We proposed and assessed the following three hypotheses.
H1 The direct control method consumes a much longer

time with higher amount of user inputs than other methods.
H2 The DMP-based method has a much lower angular

difference between the user input and assistive motion than
the POMDP-based method.

H3 The DMP-based method has a higher control feeling
than the POMDP-based method.

IV. RESULTS

A. Objective Measures

Table I shows the average objective measures for the three
control methods. Overall, the DMP-based method outper-
forms the other two as shown in Table I, and Fig. 4, 5,
6. Compared to the POMDP-based method, it is faster by
17.9% (39 vs. 46 sec), consumes less user inputs by 9.9%
(1101 vs 1211 total joystick inputs), and has a significantly
lower angular difference by 30.9% (1.39 vs. 1.82 rad).

Friedman test shows a significance in the completion time
(p < 0.001) and total amount of user inputs (p < 0.001)
between the three methods. Conover Posthoc analysis iden-
tifies that the direct control method results in a much longer
task completion time and higher amount of joystick inputs
compared to the DMP-based (p < 0.001) and POMDP-based
(p < 0.001) method. Thus, we find support for H1. No
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Black dots are the data outliers; light-green triangles are the mean values; light-green lines are the median values.

significant differences are detected in the task completion
time and the total amount of joystick inputs between the
DMP-based and POMDP-based method. For the angular
difference, the DMP-based method is significantly lower
(p < 0.001) than the POMDP-based method supporting H2.

B. Subjective Measures

Table II shows the average subjective ratings of the survey.
Overall, the DMP-based method achieves the highest score
in the user preference (Fig. 10) and perceived speed (Fig. 9)
ratings, while obtaining a moderate score between direct and
POMDP-based methods in both the control feeling (Fig. 7)
and the robot did what I want ratings (Fig. 8).

Friedman test finds a significance in the control feeling
rating (p < 0.05). Pairwise posthoc analysis shows the
following comparative results: DMP vs. POMDP (p = 0.35),
DMP vs. direct (p = 0.08), POMDP vs. direct (p < 0.05),
partially providing evidence for H3. A significance is also
found in the rating of the robot did what I wanted (p <
0.05). Posthoc analysis reveals that the direct control method
significantly differs from the other two assistive methods:
DMP vs. direct (p = 0.047), POMDP vs. direct (p = 0.027).

Marginal significance is discovered for the rating of the
perceived speed (p = 0.055) while no significance for the
overall preference (p = 0.28). By a relaxed posthoc analysis
(α = 0.055), we notice that the statistical significance
between the DMP-based and direct control method (p =
0.053) is near the threshold.

V. DISCUSSION

The DMP-based method has led to the shortest completion
time, lowest control effort among all methods, plus a higher
agreement between the user and assistive control than the
POMDP-based method, which may arise from its unique

TABLE I
AVERAGE OBJECTIVE MEASURES

Time User Input Angular Difference
DMP-based 39 sec 1101 1.39 rad

POMDP-based 46 sec 1211 1.82 rad
Direct control 103 sec 2612 N/A

TABLE II
AVERAGE SUBJECTIVE MEASURES

Control Want Speed User Preference
DMP-based 5.2 5 5.8 5

POMDP-based 4 4.8 4.7 4.2
Direct control 6.5 6.2 4 4.2

ability to respond more explicitly to real-time user inputs
making the prediction/assistive motion more compatible with
the user’s joystick control intention. Such unique features
potentially explain its higher control feeling rating over
the POMDP-based method. Instead of coordinating between
the user control and assistive motion, distance cost only
takes into account the proximity between the robot and
object and is unable to capture such control consistency in
the task. In fact, one subject commented that in one trial
using the POMDP-based method, the robot seemed to get
stuck when approaching very close to one object (not the
intended one), which may be due to the converged prediction
probability relying only on the distance information. As
such, the subject’s control feeling was substantially reduced
resulting in a less satisfactory overall experience, which is in
line with prior observations reported in [7] while contrary to
some other works showing correlations between satisfaction
and objective control efficiency [22], [23]. The direct control
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method is extremely responsive and sensitive to user control
inputs; however, it does not include any assistance. As a
result, it requires a substantially longer completion time and
greater control effort to finish the task, which raises the
mental and physical burdens on the user side and deteriorates
their overall experiences as well. Therefore, a suitable shared
assistive control method needs to be developed to balance the
objective control efficiency and subjective control feelings.

We believe that our proposed DMP-based assistive control
method may mitigate the above-mentioned dilemma, and
the results of this paper open up several directions for
future research. First, a more extensive user study with more
subjects is needed to further validate our results. Second,
the offline learning approach can be improved by using the
Probabilistic Movement Primitives (ProMPs) for providing
a trajectory distribution subsequently employed in the real-
time goal prediction and shared assistive control [24]. Third,
validating the generalizability of the proposed approach in
more complex tasks (e.g, scooping and feeding the food to
the user) and environments (e.g., having multiple obstacles
around the goal object), which potentially makes the user
significantly detour into another motion direction rather
than staying close to the demonstrated one. Such task and
environment complexity changes may cause the trajectory to
be highly nonlinear affecting the canonical phase estimation.

VI. CONCLUSION

In this paper, we have proposed a DMP-generated goal
prediction and shared assistive control method and compared
it with the POMDP-based method (distance cost) and direct
control method. Instead of relying on the robot’s distance
information relative to the object, the proposed method is
able to adjust its goal prediction and assistance by analyzing
the similarity between the user input and assistive motion,
thus enabling a more responsive system behavior to the real-
time control inputs from the user. Based on the pilot study’s
results, we have found that the direct control method has
a significantly longer completion time and greater amount
of user inputs than the other two assistive methods support-
ing H1. The DMP-based method produces a much lower
angular difference between the user input and assistive
motion supporting H2, and receives the highest rating in
the user preference and perceived speed. A significance is
also identified in the control feeling rating with the DMP-
based method being the second-highest providing evidence
for H3. To further improve the current work, future studies
may focus on exploring the resultant effect of increasing the
sample size, using more advanced learning from demonstra-
tion techniques, and testing whether this method can adapt
to more complex and diverse tasks and environments.
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