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Learning from Demonstration (LfD) is a framework that allows lay users to easily program robots. However, the efficiency of robot
learning and the robot’s ability to generalize to task variations hinge upon the quality and quantity of the provided demonstrations.
Our objective is to guide human teachers to provide more effective demonstrations, thus facilitating efficient robot learning. To achieve
this, we propose to use a measure of uncertainty, namely task-related information entropy, as a criterion for suggesting informative
demonstration examples to human teachers to improve their teaching skills. This approach seeks to minimize the requisite number of
demonstrations by enhancing their distribution throughout the workspace. In a conducted experiment (N=24), an augmented reality
(AR)-based guidance system was employed to train novice users to produce additional demonstrations from areas with the highest
entropy within the workspace. These novice users were trained for a few trials to teach the robot a generalizable task using a limited
number of demonstrations. Subsequently, the users’ performance after training was assessed first on the same task (retention) and
then on a new task (transfer) without guidance. The results indicate a substantial improvement in robot learning efficiency from the
teacher’s demonstrations, with an improvement of up to 198% observed on the novel task. Furthermore, the proposed approach was
compared to a state-of-the-art heuristic rule and found to improve robot learning efficiency by 210% compared to the heuristic rule.
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1 INTRODUCTION

In Learning from Demonstration (LfD), robots acquire skills through examples provided by human demonstrators,
offering a promising avenue for efficient and effective robot learning. This method not only identifies optimal search
spaces for learning but also allows users to convey task information naturally, contrasting sharply with direct task
programming [1, 4]. Such natural interactions are particularly advantageous for novice users, who may lack the technical
expertise required for programming through conventional interfaces or a deep understanding of the underlying systems
[14].
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Fig. 1. System Overview: Using information entropy for guiding users to the highest uncertainty areas in LfD.

While LfD builds upon the successes of standard Machine Learning (ML) methods, which have been applied
successfully across a diverse array of applications [14], teaching robots through human demonstrations introduces
unique challenges. These include constraints such as limited human patience and the generation of low-quality
and inefficient data [3]. The size and diversity of the training data set will determine the speed and accuracy of
learning, including its generalization characteristics. Moreover, it has been shown that data modifications often impact
generalization more profoundly than modifications to the learning algorithm itself [15]. Thus, this paper focuses on
optimizing the input (i.e., demonstration data) to the learning algorithm, rather than altering the algorithm itself.

Human teaching strategies are typically optimized for human learners and may not align perfectly with the needs of
machine learners [10]. Nevertheless, human teachers can adjust to a specific learner’s requirements [22]. To facilitate
this adaptation, we introduce the concept of "teaching guidance," which consists of instructions provided to human
teachers with the goal of influencing their choice of examples towards those that are most informative for a particular
learner (e.g., a robot).

We aim to help novice teachers provide demonstrations efficiently by using information entropy as the criterion
for selecting demonstrations for robot learning and generalization through the following contributions: i) introducing
task-dependent information entropy into the LfD pipeline to define uncertainty across all task space areas, as shown in
Fig. 1; ii) proposing the integration of Augmented Reality (AR) with the entropy-based guidance system as a training
framework to help novice users better identify informative demonstrations; iii) evaluating the proposed training
framework in a user study; and iv) comparing robot learning efficiency using our information entropy approach with a
state-of-the-art heuristic rule [32].

2 RELATEDWORK

Teaching robots through demonstration poses challenges for lay users as they may struggle to provide useful [22, 30]
and sufficient demonstrations [32]. Robots can become more proactive in their learning by requesting additional
demonstrations [34] or seeking clarification [9]. However, this shift to active learning can lead to users feeling frustrated
and disengaged [6]. Typically, learning from an expert teacher who selects examples optimally is faster than an active
learning process where learners choose their own examples [17]. Therefore, teachers require guidance in selecting
optimal examples for robot learning and generalization and ultimately learn how to define these optimal examples.
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Whilst there is a great deal of research on policy-learning methods for LfD, there is considerably less research
on the quality of teaching and how this might be improved [1, 4]. In fact, effective teaching can be challenging,
even when instructing humans, requiring an understanding of the learner’s knowledge, suitable teaching strategies,
and more. Teaching robots presents an even greater challenge. Cakmak and Takayama [8] proposed using various
instructional materials to guide novice teachers on how to teach robots using kinesthetic teaching and a spoken dialogue
interface. Mohseni-Kabir et al. [26] designed an interactive system for teaching users a hierarchical task structure. Study
participants were given explicit instructions on how to teach the robot for each task. Such an approach is untenable for
scaling up to a vision of ubiquitous robotics, as it is impractical for experts to teach every end user how to program
robots for every desired task. Instead, we examine how people teach novel tasks to robots in the absence of a roboticist’s
explicit tutelage and focus on guiding users to optimally select a set of demonstrations for the robot to learn a task.

Interactive LfD is a technique that allows robots to incrementally learn and refine their skills from human demon-
strators [21, 35]. Unlike traditional LfD, interactive LfD features an iterative process of demonstration, execution, and
real-time feedback from the demonstrator, allowing the robot to incrementally refine its task performance. Calinon and
Billard [12] and Weiss et al. [36] both described an incremental learning approach where teachers decide on the next
demonstration by observing the robot attempt the taught skill in new locations. This overlooks the question of how the
attempts should be selected to hasten robot learning progress. Sena et al. [32] proposed heuristic rules for deciding
demonstration locations in the task space. These rules are as follows: (i) provide one demonstration, starting from
anywhere in the task space, (ii) continue providing demonstrations within 4 cm of the first demonstration, until the first
demonstration is surrounded by successful test points, (iii) provide further demonstrations within 4 cm of the successful
test points, in the area with the greatest number of failed test points. These rules are limited to their experimental setup
and are hard to generalize for a different task. To overcome this limitation and provide a more general framework, we
propose using a task-independent rule (information entropy) to guide users to provide efficient demonstrations [32].

A closely related field of research that considers optimal teaching of machine learning systems is machine teaching,
which aims to design the optimal training data to drive the learning algorithm to a target model [37]. Two relevant
methods are: the "teaching dimension model," which represents the minimum number of instances a teacher must
reveal to uniquely identify any target concept [17], and the "curriculum learning principle," which is a general approach
in which training examples are presented to the learner in a sequence tailored to learning, progressing from simple to
difficult concepts [2]. This opens the door for further research on which optimal teaching strategy should be used with
robots. Khan et al. [22] compared the teaching dimension model and curriculum learning principle in teaching a simple
1D classification problem, Cakmak and Lopes [7] studied optimal teaching in sequential decision tasks. Other related
approaches examine how a robot can give informative demonstrations to a human [20], or formalize optimal teaching
as a cooperative two-player Markov game [18]; however, neither approach addresses the machine teaching problem of
finding the minimum number, quality, and locations of demonstrations needed to teach a task.

3 OBJECTIVES

The objective of this research is to enhance human teaching skills to provide efficient demonstrations to robots.
Therefore, we propose using information entropy as the criterion for suggesting to the human demonstrator the most
informative demonstrations from which the robot can learn. The research questions we aim to address are as follows:

(1) Does information entropy improve robot learning efficiency by guiding demonstration selection?
(2) Does an entropy-based guidance system enhance users’ performance in teaching robots through demonstration?
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Fig. 2. Overview of the user study procedure. (1) Baseline: The user provides as many demonstrations as they think would be
sufficient for the robot to learn the task. (2) Training: The user is guided to the uncertain areas for three trials. (3) Retention test:
The user is evaluated on the same task without guidance. (4) Transfer test: The user teaches the robot to move from a specific
starting point to a wider goal zone without guidance.

(3) How much visual information should the guidance system provide to improve the user’s teaching efficiency?

To address the first question, we compared an entropy-based guidance system with a heuristic guidance system as
proposed in [32] (described in Section 2). To tackle the second question, we incorporated the proposed entropy-based
guidance system into a training framework for novice users to assess whether their teaching skills improved—specifically
in terms of the number and distribution of provided demonstrations—after training. For the third question, we conducted
a user study comparing two visual guidance systems: 1) single point suggestion and 2) heatmap representation of the
task space’s entropy values. This comparison aims to determine how the amount of visual information provided affects
the users’ teaching efficiency.

4 PROPOSED APPROACH

As described above, we propose using information entropy as the criterion for suggesting to the user the location of
the next demonstration. In information theory, entropy is a measure of the uncertainty or randomness of a system
or signal [33]. If the entropy is higher, more information is needed to represent an event. Mathematically, entropy is
represented by the Shannon entropy formula, which is given by:

𝐻 (Φ) = −
∑︁
𝑖

𝑝 (𝜙) log𝑝 (𝜙) (1)

where 𝑝 (𝜙) is the probability of a particular event 𝑖 . This probability can be calculated as a weighted sum of different
task-dependent features [38].
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The proposed approach applies to any taskwhere the success criteria are defined over the entire workspace. Herein, we
consider teaching a robot to navigate in a constrained workspace. This problem is generic to many robotic applications in
domestic, industrial, and space exploration contexts. This category of tasks requires the robot to navigate its workspace
while avoiding collisions to reach a goal position. The success criteria for these tasks can be defined as follows: a) the
robot’s end effector reaches the goal location, b) no collisions occur with obstacles in the environment, and c) all points
on the trajectory are within the workspace (i.e., the robot should not deviate from its designated workspace).

Fig. 1 provides an overview of the teaching process using the proposed approach on an example task to illustrate
its applicability. The figure shows an example of teaching a robot how to retrieve items from a shelf. The user aims
to provide the minimum number of demonstrations —an efficient set of demonstrations— that enables generalization
across the shelf (i.e., the workspace). The task requires the robot to pick up all items from a shelf without encountering
collisions. To efficiently teach the robot, the workspace and the success criteria for the task are first defined. Next, the
user provides initial demonstrations of picking up an item from the shelf. Using the provided demonstration(s), the
robot learns a model of how to perform the task. The robot is then evaluated on all regions of the shelf, and the entropy
of each region is calculated as shown in equation 1. The probability is defined based on the success criteria as follows:

𝑝 (𝜙) = 𝑤1𝑑𝑔𝑜𝑎𝑙 +𝑤2𝑛𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 +𝑤3𝑛𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (2)

where 𝑑𝑔𝑜𝑎𝑙 is the distance between the trajectory endpoint and the task goal point, 𝑛𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is the number of samples
in collision with the obstacles, and 𝑛𝑜𝑢𝑡𝑠𝑖𝑑𝑒 is the number of samples outside the task space. The coefficients𝑤1,𝑤2,𝑤3

are the weights for each feature of the probability and are experimentally calculated. Each feature is normalized by its
maximum value before using it in entropy𝐻 (Φ) calculations. A 2D instantiation of this task was used in our evaluations
to facilitate the comparison with the state-of-the-art work [32], as explained in Section. 5.1.

Areas with high entropy are highlighted to guide the user in providing additional demonstrations. This iterative
process continues until the entropy for all regions becomes sufficiently low, indicating that the robot is confident in
generalizing across all regions in the workspace. Importantly, our information entropy approach is not influenced by
the user’s expertise level, the learning algorithm, or the task complexity. If low-quality demonstrations are provided,
the guidance system may recommend more demonstrations to facilitate effective robot learning and generalization.

To guide the users to the uncertain areas in the task space, a Microsoft HoloLens AR head-mounted display [23] is
used to visualize the entropy values in task space areas. Providing the user with more insight into the learning process
may lead to more effective demonstrations. However, providing too much information may overwhelm and hinder the
user, especially one that is untrained. To find an adequate amount of information to be presented in the visual interface
about the robot’s learning progress, we proposed two visualization schemes. Heatmap visualization shows the entropy
values across the task space as a heatmap, while single-point visualization only highlights the most uncertain area in
the task space to provide an additional demonstration as shown in Fig. 2-2. Using AR in guidance makes the training
system widely applicable to both 2D and 3D tasks and increases the user’s situational awareness, as the feedback is
directly overlaid on the task, in contrast to the computer screen used in [32].

For task learning, we used the Task Parameterized Gaussian Mixture Model (TP-GMM) [11]. TP-GMMs have been
extensively used for LfD [27, 28], and they show good generalization using a limited set of demonstrations. TP-GMMs
model a task with parameters that are defined by a sequence of coordinate frames. In a 𝐷 dimensional space, each task
parameter/coordinate frame is given by an 𝐴 ∈ R𝐷×𝐷 matrix indicating its orientation and a 𝑏 ∈ R𝐷 vector indicating
its origin, relative to the global frame. A𝐾-component mixture model is fitted to the data in each local frame of reference.
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Each GMM is described by
(
𝜋𝑘 , 𝜇

( 𝑗 )
𝑘
,Σ( 𝑗 )

𝑘

)
, referring to the prior probabilities, mean, and covariance matrices for each

component 𝑘 in frame 𝑗 , respectively.
To use the local models for trajectory generation, they must be projected back into the global frame of reference and

then combined into one global model. Continuous trajectories can then be generated from the global mixture model
using Gaussian Mixture Regression (GMR); Calinon [11] provides further details. A Bayesian Information Criterion
(BIC) was used to define the optimal number of 𝐾-Gaussian components to fit the demonstrations.

5 EVALUATION

To evaluate the proposed entropy system, a preliminary experiment in simulation comparing the proposed approach and
one of the state-of-the-art heuristic guidance rules is presented. It aims to study the impact of the proposed approach
on robot learning efficiency. After that, a user study is presented to explore the contribution of the proposed approach
to improving human teaching skills.

5.1 Experimental Task

Fig. 3 represents the experimental task, in which a Kuka IIWA LBR14 robot is taught to navigate a 2D maze by drawing
a trajectory on the whiteboard from a starting zone to a target point. Similar success criteria as in Section 4 are used.
The robot should avoid collisions with the obstacles in the workspace and it should not go outside the workspace
specified by a two-dimensional bounding rectangle (45 cm by 72 cm) drawn on the whiteboard. The starting zone is
defined by a 45 cm by 15 cm rectangle. In the experiment, the starting zone is discretized to a 4 x 14 test grid with 56
circles separated by 0.5 cm.

Participants use the joystick to teach the robot to navigate through the maze. The teaching process is finished if the
robot can generate a "successful" trajectory for 90% of the points in the starting zone to the goal position. The success
criteria of the trajectories are similar to what is defined in the example task in Section 4. Microsoft Hololens is used to
overlay a geometrically accurate starting zone on the real environment, offering user feedback on the robot’s progress
and guiding efficient demonstration, as shown in Fig. 2.

A modified version of this task was used in the transfer test for evaluating the user’s performance in new tasks. The
training task was flipped; the goal point became a starting point and the starting zone became the goal zone. This goal
zone was shortened to a 4 x 8 test grid, as shown in Fig. 2.

5.2 Performance Metrics

5.2.1 Quantitative measures.

(1) Task Completion Time: We measured the total time, 𝑡 , required by the user to complete the experiment task.
(2) Number of Demonstrations: We measured the number of demonstrations |D| that achieve at least 90%

coverage of the starting zone.
(3) Teaching Efficacy: Efficacy refers to the ability to perform a task to a satisfactory or expected degree. Here,

we used the teaching efficacy defined in [32], which is the ratio between the successful points,|𝐼 |, and the total
number of tested points, |𝐼 |, (𝜖 = |𝐼 |

|𝐼 | ).
(4) Teaching Efficiency: Efficiency in any given application is often context-dependent; however, typically it is

desirable to minimize the total number of demonstrations required because this is correlated with both the time
spent teaching and the space needed to store data. Here, we used the teaching efficiency defined in [32], which is
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Fig. 3. Experimental setup used in the user study.

the efficacy normalized by the number of the provided demonstrations, |D|,

𝜂 =
𝜖

|D| . (3)

5.2.2 Qualitative measures.

(1) NASA Task Load Index (NASA-TLX): This questionnaire [19] is composed of six questions asking the
participants to rate their perceived task load in six different aspects on a 21-point scale.

(2) System Usability Scale (SUS). This scale evaluates the usability of the proposed training system. The SUS [5]
questionnaire includes ten questions asking the participant to rate different aspects of the system’s usability on a
10-point scale. An overall score is then calculated.

5.3 Preliminary Experiment: Guidance Rule in Simulation

In this experiment our goal is to compare the entropy-based guidance rule with the heuristic guidance rule proposed
in [32] (described in Section 2). Various factors influence robot learning and generalization, including the quality,
quantity, and distribution of provided demonstrations. Here, we specifically focus on the guidance rule that governs the
"number" and "distribution" of provided demonstrations, while keeping all other factors constant. To ensure consistent
demonstration quality, we employed the motion planner RRT-Connect [24] to generate demonstrations for both guidance
rules. Trajectories were generated from all points within the starting zone to the goal point and saved for the experiment.
Additionally, to simulate a real-case scenario involving human demonstrations, we collected expert demonstrations,
performed by one of the paper’s authors, for all points within the starting zone of the experimental task shown in Fig. 3.

For the comparison study, for each guidance rule, we developed a Python script to guide the robot’s learning
process. The experimental setup was simulated with RViz, the standard tool for visualization and interaction with robot
applications implemented in ROS. The script initially proposes a point in the starting zone, and its corresponding saved
trajectory (either from the motion planner or expert demonstrations) is retrieved. Then, the TP-GMM model is trained
by this trajectory and tested with all points in the starting zone to identify the successful and failed trajectories. Using
the guidance rule, the script selects the next point in the starting zone for the next demonstration. These steps are
repeated until the learning model generates successful trajectories for 90% or more of the points in the starting zone.
The same procedure is repeated 56 times for both guidance rules until every point in the task space has been tested as
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Fig. 4. The average robot learning efficiency for both the entropy rule and the heuristic rule driving the selection of planner and
expert demonstrations.

Fig. 5. Performance metrics for comparing heatmap and single-point groups in baseline, retention, and transfer tests.

the initial point. Finally, the two guidance rules are compared with respect to the number of demonstrations needed to
generate successful trajectories for 90% or more of the starting zone.
5.3.1 Hypotheses.
The experimental hypotheses are chosen to test whether robot learning efficiency, Equation 3, improves using the
proposed approach compared to the heuristic rule. The alternative hypothesis is formally defined as:

• H1(a): For robot learning using planner demonstrations, learning efficiency using the entropy guidance rule is
significantly higher than learning efficiency using the heuristic rule.

• H1(b): For robot learning using human expert-generated demonstrations, learning efficiency using the entropy
guidance rule is significantly higher than learning efficiency using the heuristic rule.

5.3.2 Results.
Fig. 4 shows the mean and 95% confidence interval of the robot learning efficiency in 56 trials using the heuristic rule
and entropy rule with both expert and planner demonstrations. Overall, using the entropy rule achieves a higher robot
learning efficiency than the heuristic rule, for both planner and expert demonstrations. A 2x2 Bayesian ANOVA was
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conducted to investigate the impact of a) guidance rule, and b) demonstration type on robot learning efficiency. Both the
guidance rule (𝐵𝐹10 = 7.43 × 1015) and demonstration type (𝐵𝐹10 = 2.82 × 1013) show a large effect on robot learning
efficiency. In addition, robot learning efficiency using either guidance rule strongly depends on the demonstration type
(the quality of the provided demonstrations) (𝐵𝐹10 = 184.11). These results support H1(a) and H1(b).

Interestingly, a slight decrease in the demonstration’s quality (i.e., from the planner to the expert demonstrations)
causes a drastic decrease in the robot learning efficiency by 200% using the heuristic rule, while using the proposed
entropy rule the efficiency decreased by only 33.9%. This shows the importance of the guidance rule in robot learning from
demonstrations and its contribution to the robot learning efficiency which cannot be compensated only by improving
the demonstration quality. Thus, it is important to guide the users to provide an efficient set of demonstrations for the
robot to learn from.

5.4 User Study Experiment

From the simulation experiment results, we found that the entropy guidance rule significantly improves robot learning
efficiency. Therefore, we utilized this rule in a training framework for users to guide them to provide an efficient set of
demonstrations for the robot. Fig. 2 shows an overview of the user study procedure as follows:

(1) Baseline: The user provides as many demonstrations as they think would be sufficient for the robot to generate
successful trajectories from any point in the starting zone to the goal position. The provided demonstrations
are used to train a TP-GMM model and evaluate the performance which is provided back to the user via the
Hololens as visualized feedback. The blue circles represent successfully learnt trajectories while the red circles
represent failed learnt trajectories.

(2) Training: The user provides an initial demonstration, and then the learning model is evaluated across the
starting zone. The entropy is calculated in each area and visualized through the HoloLens as a heatmap or
single-point, according to the training group. The user provides an additional demonstration in the highest
entropy point and the entropy visualization is updated, and so on. This continues until the robot learns successful
trajectories for 90% or more of the starting zone. Each user was trained for three trials.

(3) Retention Test: This step is similar to the baseline to evaluate the performance after training.
(4) Transfer Test: The user teaches the robot to move from a specific starting point to a goal zone without guidance,

described in Section 5.1.

The users were asked to fill in the NASA-TLX questionnaire [19] after their baseline and retention tests to see the
effect of the training on their perceived task load. They were also asked to fill in the SUS questionnaire [5] after the
training to get their subjective evaluation of the proposed training system. Lastly, a semi-structured interview was
conducted before and after training to inquire about users’ reasoning behind their selection of the number of provided
demonstrations and their respective placements. These interviews were conducted with the intention of delving into
users’ mental models of robot learning before and after training.
5.4.1 Hypotheses.
The experimental hypotheses are chosen to test whether the user’s teaching skills measured through robot learning
efficiency are significantly improved using the proposed approach. They are defined as:

• H2: Robot learning efficiency will be significantly improved after training the human teacher using the proposed
approach (over both groups).
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• H3: The heatmap visualization group will achieve a significantly higher improvement in robot learning efficiency
than the single-point visualization group on the retention test (i.e., same training task).

• H4: The heatmap visualization group will achieve a robot learning efficiency that is significantly higher than the
single-point visualization group on the transfer test (i.e., on a novel task).

The user study is a between-participants design, so each participant is assigned to one group: either the heatmap
group or the single-point group. A priori power analysis was conducted using G*Power version 3.1.9.7 [16] to determine
the minimum sample size required to test the study hypotheses. Results indicated the required sample size to achieve
80% power for detecting a medium effect size (Cohen’s f = 0.3), and a type I error rate 𝛼 = 0.05, is 𝑁 = 24, or 12
participants per condition. Accordingly, the results reported below are for a population of 24 participants (14 male,
10 female; ages 𝜇 = 24, 𝜎 = 4). We recruited participants for our user study through advertisements posted on the
University of British Columbia (UBC) campus and social media. Prior to conducting the study, we obtained research
ethics approval from UBC’s Behavioural Research Ethics Board (application ID H20-03740-A001). We obtained informed
consent from each participant before commencing the experiment.
5.4.2 Results.
Quantitative Measures
Fig. 5 depicts the mean and 95% confidence interval for all performance metrics across baseline, retention, and transfer
tests for both the heatmap and single-point groups. Overall, there is a noticeable improvement in all performance
metrics during the retention and transfer tests when compared to the baseline performance. Efficiency improved by
140% and 164% from the baseline to the retention for both heatmap and single-point groups, respectively, and by 146%
and 198% from the baseline to the transfer test for both heatmap and single-point groups, respectively. Interestingly,
users’ performance improved more in the transfer test than in the retention test compared to their baseline performance.
Given that the efficiency metric encapsulates both the number of demonstrations and efficacy, the statistical analysis
was centred on efficiency.

Bayesian mixed analysis of variance (ANOVA) showed a strong impact of the training on efficiency when comparing
the baseline to the retention test (𝐵𝐹10 = 1387.16); supporting H2. The same analysis showed inconclusive results on
the impact of the visualization type on efficiency (𝐵𝐹10 = 0.4); no support for H3 and H4. Furthermore, the Bayesian
independent samples t-test showed inconclusive results on the comparison between the transfer test efficiency in both
heatmap and single point groups (𝐵𝐹10 = 0.60). This result highlights the effectiveness of the proposed entropy-based
guidance system, irrespective of how the entropy information is visually presented to the user.

We also investigated the distribution of the demonstrations over the task space across the baseline, retention and
transfer tests. This shows the different strategies users adopted to distribute their demonstrations over the task space.
Fig. 6 shows a heatmap representing the number and locations of the provided demonstrations across different stages
of the experiment for both heatmap and single-point groups. The number of the provided demonstrations notably
decreased from the baseline to the two tests. The median number of baseline demonstrations was 6 and 7, respectively,
for the heatmap and single-point groups, decreasing to a median of 4 in the retention and transfer tests for both groups.
Compared to the baseline which has a higher number of demonstrations from points in the interior of the start zone,
the retention and transfer test demonstrations are concentrated at the corners. This highlights the change in users’
strategy for selecting the number and locations of demonstrations.

The proposed approach implicitly addresses the issue of low-quality demonstrations from novice users. If a user
provides low-quality demonstrations, the system will request additional demonstrations to improve task learning and
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(a) Heatmap group

(b) Single-point group

Fig. 6. The number and distribution of the demonstrations in the starting zone for the baseline, retention, and transfer tests for both
the (a) heatmap group and (b) single-point group. Users provided a high number of demonstrations and distributed them across the
starting zone in the baseline. After training, they provided a lower number of demonstrations focused on the corners.

generalization. For instance, Fig. 7 illustrates the pattern of robot learning efficacy for each provided demonstration from
three different users along with the distribution of the demonstrations over the starting zone. The first user provided
high-quality demonstrations, so only three demonstrations were sufficient for the learning model to generalize across
the entire task space. The second user provided mixed-quality demonstrations, hence a higher number of demonstrations
was required to achieve generalization across the task space, with an efficacy of 96%. The third user provided low-quality
demonstrations, thus the learning model only generalized across 43% of the task space with six demonstrations. Here,
we used task learning performance as a measure of quality, as proposed in our previous paper [30].

Qualitative Measures
Perceived Task Load: Fig. 8 illustrates the box plots for both the heatmap and single-point groups following the
baseline and retention tests. It shows that both effort and frustration have decreased after training in the heatmap group
while only the effort decreased in the single-point group. In contrast to the quantitative measures, users’ perceived
performance after training was lower than before training in both groups. In general, the task load metrics statistically
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(a) High-quality demonstrations example (b) Mixed-quality demonstrations example

(c) Low-quality demonstrations example

Fig. 7. An example of high-, mixed-, and low-quality demonstrations, illustrating their relationship to learning efficacy and their
distribution across the task space.

indicate no significant difference before and after the training. This suggests that the training did not have an adverse
impact on users’ perceived task load or lead to overwhelming experiences.

System Usability: The usability score for the heatmap group is (𝑀 = 75.21; 95%𝐶𝐼, 64.99𝑡𝑜85.42), while in the
single point group (𝑀 = 62.71; 95%𝐶𝐼, 55.89𝑡𝑜69.53). According to the global benchmark for SUS created by Sauro and
Lewis through surveying 446 studies spanning different types of systems, the mean given score is 68 ± 12.5 [31]. When
comparing this global benchmark mean score with the scores obtained from the two training groups, the observed
differences were inconclusive (Bayesian one-sample t-test 𝐵𝐹10 = 0.75, 𝐵𝐹10 = 0.89, respectively). This suggests that
both training approaches are usable from the user’s perspective.

Interviews: Participants employed diverse strategies when determining the number and placements of demon-
strations during the baseline phase. Among the 24 participants, 19 opted to establish a grid of points, strategically
encompassing both the corners and intermediary positions. As articulated by one participant: "Well, overall, I just

wanted to get the corners and then a few different points along the diagonals in between. I just felt like it kind of covers the

majority of the grid", which is reflected in Fig. 6. In contrast, two other participants opted for a completely random
selection of demonstrations, favoring a higher count of demonstrations (18 and 23) to ensure comprehensive coverage
of the starting area. Another participant thought that providing a dense set of points would allow the robot to learn the
distance between the points in the starting zone and generalize well to other areas. Another participant provided three
demonstrations that formed a triangle. They thought that the two points forming the base of the triangle would specify
the width for the learning algorithm to interpolate in, while the third point would specify the height for the algorithm.
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Fig. 8. Participants response to NASA-TLX [19] questions after baseline and retention test. There is no significant difference before
and after the training.

After training, the participants approached the task differently and efficiently thought about the number and
distribution of the provided demonstrations. Almost all participants provided an average number of demonstrations
in retention equal to the average number of demonstrations they provided in the training, regardless of the training
condition. As one participant said, "After the second training trial, I realized that I don’t need a really large number

of points as long as I pick the four corners of the rectangular area". In addition, there was an agreement from several
participants in the heatmap group that visualizing the generalization area of each point in the training was very helpful
in deciding the location of the next demonstration in the retention test. Some participants counted the number of
generalized points around one demonstration in the training and tried to distance the demonstrations in the retention
by that number of points.

6 DISCUSSION

This study demonstrated that a few trials of interactive training and guidance for lay users significantly improved
their teaching skills, which in turn enhanced robot learning and generalization efficiency. Notably, this learning and
generalization occurred online, using demonstrations from teachers with no prior knowledge of robotics or machine
learning algorithms. By using the proposed training framework, users develop an understanding of what demonstrations
the robot requires to learn efficiently, without necessarily understanding how the learning process occurs. Thus, the
overarching goal of this work is realized by decreasing the teaching cost through guiding users to provide a small
number of demonstrations that achieve wider generalization.

From the preliminary experiment results and statistical analysis, there is support forH1(a) andH1(b). Robot learning
efficiency using the information entropy rule was significantly higher than using the heuristic rule with both expert
demonstrations and motion planner demonstrations. Furthermore, using the same task as in [32] but with a larger
scale, we found a failure case for the heuristic rule: it happens in 61% of the total experiment trials. This failure case
happens whenever all the surrounding points are demonstrated and the learning algorithm performs poorly in learning
and generalization. This failure case is expected to be even worse with novices who tend to provide low-quality
demonstrations [1] that are negatively affecting robot learning and generalization [30].

From the user study results and statistical analysis, there is support forH2 but no support forH3 orH4. Both training
groups showed a significant improvement in learning efficiency from the baseline to the retention and transfer tests.
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This underscores the importance of training novice users before teaching the robot, consistent with prior work [8, 13].
Additionally, this study shows the benefit of the proposed entropy guidance system regardless of the visualization
used in training. Notably, both training groups achieved similar performance in retention and transfer tests. This is
because most participants had a preconception of creating a grid of points to cover the starting zone to help the robot
learn better, as shown in Fig. 6. Subsequently, post-training, participants recognized the feasibility of achieving high
efficiency with a reduced number of demonstrations, contrary to their initial assumptions. As shown in Fig. 5, the
efficacy before and after training is similar. This finding contrasts with previous work [32], which found that most
participants tend to underestimate the number of demonstrations required to teach the robot effectively.

For guidance system usability, the heatmap group reported a higher SUS score than the single-point group, while both
training groups showed an inconclusive difference with the global mean score. We posit that this is because participants
in the heatmap condition had access to a larger amount of information during training than the single-point group.
The heatmap visualization provided feedback on robot learning progress and an efficient way for deciding their next
demonstration. Only one participant commented that they wished to have a highlight of the highest uncertainty point
in the heatmap. This is because they sometimes found the colors in the heatmap were very close to each other, making
it hard to define the highest uncertainty point. Participants in the single-point group did not have access to the robot’s
learning progress and therefore had to depend on the demonstration point suggestions to find a pattern on how to
efficiently teach the robot.

A surprising observation emerged concerning users’ perceived performance post-training. Despite a significant
quantitative improvement in performance, 8 out of the 24 participants reported a decline in perceived performance
compared to before training. This discrepancy was investigated by analyzing their interview data related to their
approach to determining the number and locations of demonstrations. These participants experienced significant
shifts in their strategies after training, which impacted their confidence and perception of performance. For instance,
one participant provided 16 demonstrations in the baseline. After training, they provided four demonstrations in the
retention test and remarked in the interview, "I just used four points, although I’m not sure I covered 90%, I don’t know."

Others changed their strategies from dense point sets to a more distributed approach, albeit with skepticism. These
findings suggest the potential need for adaptive training tailored to individual participants’ requirements, especially for
those with strong pre-training strategy convictions, aligning with previous research [30].

Another interesting observation is that one participant without prior knowledge of robotics realized the importance
of the demonstration’s quality in conjunction with the number and location of the provided demonstrations for robot
learning and generalization [25]. They tried different starting points in the training and then realized that providing
smooth demonstrations without abrupt corners allows the robot to learn and generalize faster with a smaller number of
demonstrations, as shown in Fig. 7. However, it is challenging to extrapolate that all participants would naturally arrive
at this realization without proper training, as in [29]. This underscores the necessity for an instructional framework
to guide participants in offering demonstrations of both high quality and optimal efficiency, echoing the emphasis of
previous research [1].

7 CONCLUSION AND FUTUREWORK

Toward our goal of achieving efficient robot learning and generalization, we proposed using information entropy as
a criterion for guiding human teachers to provide the next demonstration that achieves the highest efficiency. This
proposed approach reduces the teaching dimension by suggesting the minimum number of demonstrations that achieve
the highest learning efficiency. The approach was validated in two experiments to explore its contribution to both
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efficient robot learning and generalization, as well as improving novices’ teaching skills. We found that the proposed
approach significantly improves robot learning efficiency compared to the state-of-the-art heuristic rule. Moreover,
information entropy was integrated into two training schemes and tested in a user study. The results show a significant
improvement in robot learning efficiency after training in both groups.

We believe that the results of this paper open up several directions for future research. The significant improvement
in efficiency by merely guiding users to strategically distribute the demonstrations suggests that guiding users to provide
high-quality demonstrations, as in [29], along with their good distribution, could further boost learning efficiency. It
would also be interesting to test the proposed approach in facilities with real users without controlling the conditions.
For instance, users would have the freedom to decide how long they need guidance to ensure they provide the most
beneficial demonstrations to the robot.
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